
THE SURPRISING IMPACT OF 
1% PACKET LOSS
KEMAL ŠANJTA

PRINCIPAL INTERNET ANALYST

KEMALS@CISCO.COM



RESEARCHED BUT NOT QUANTIFIED PROBLEM

 Intricacies of TCP are well researched

 Packet loss has negative effect on flows

 Not something that we quantify often

 Network engineers tend to look past “small” levels of packet loss (say 1 or 2%)



VARIOUS METHODS TCP USES TO HANDLE PACKET LOSS

 Duplicate ACKs

 Timeouts

 Explicit Congestion Notifications (ECN)

 Selective Acknowledgements (SACK)

 Congestion Avoidance Algorithms



CUBIC: THE DEFAULT CONGESTION AVOIDANCE ALGORITHM

 Given increased popularity of the Internet and growth of networks, 

network engineers realized that earlier congestion avoidance algorithms 

such as Tahoe, utilized available bandwidth slower than they should, 

especially in higher-bandwidth networks

 Default congestion avoidance algorithm on all major operating systems



CUBIC: HOW IT WORKS?

 Congestion Window Adjustment

 CUBIC employs a cubic function to adjust the congestion window size

 The congestion window is increased aggressively during the slow start phase and cautiously during 
congestion avoidance. It reduces the congestion window sharply upon detecting packet loss, 
indicating network congestion

 Window Scaling

 Adjusts the congestion window size based on the current network capacity and congestion level

 TCP Timestamps

 CUBIC uses TCP timestamps for fine-grained measurement of round-trip time (RTT). Helps in 
estimating the available bandwidth and adjusting the congestion window accordingly

 Congestion Avoidance

 Once the congestion window reaches a certain threshold, CUBIC switches to congestion avoidance 
mode. It increases the congestion window size gradually, probing for additional bandwidth without 
inducing congestion

 Packet Loss Reaction

 CUBIC reacts to packet loss by reducing the congestion window size sharply

 Implements an additive increase, multiplicative decrease (AIMD) approach to adjust the congestion 
window dynamically



 Five Linux (Ubuntu 22.04) hosts configured to forward packets 

 1Gbps connectivity between devices

 Static routing

 Sub interfaces configured on hosts, required VLAN configuration on switch

 Measuring throughput using iperf3

 Unlike bandwidth, which represents the maximum capacity of the channel, 

throughput reflects the real-world performance and efficiency of the data 

transmission process

TEST METHODOLOGY



SYMMETRIC AND ASYMMETRIC NETWORK PATHS

Symmetric network (forward and 

reverse traffic path is the same)

Asymmetric network (reverse traffic 

is taking a different path when 

compared to the forwarding path)



ESTABLISHING A BASELINE (NO PACKET LOSS)

Baseline (symmetric)

Mean 804.673506

STD 13.0217464

Min. 710

25% 799.99

50% 809.93

75% 810.046

Max. 830.419

Baseline 

(asymmetric)

Mean 864.139471

STD 14.647341

Min. 720.067

25% 859.973

50% 869.965

75% 870.3815

Max. 900.002

 804.6 Mbps and 865.13 Mbps of Throughput for symmetric and asymmetric network, respectfully

 Asymmetric network traffic saw 7.3% increase in Throughput over symmetric network 



INTRODUCING PACKET LOSS

 tc ("traffic control") utility

 tc has capabilities such as shaping, scheduling, 

policing, and dropping

 Enhancement called netem ("network emulation") that 

allows adding delay, packet loss, duplication, and other 

characteristics to packets outgoing from a specific 

network interface



THE CURIOUS CASE OF 1% PACKET LOSS

On average, 1% of packet loss causes 70.0%+ decrease in throughput!

 804.6 Mbps of Throughput at baseline, 235.5 Mbps of Throughput at 1% loss in symmetric topology 

 864.13 Mbps of Throughput at baseline, 222.4 Mbps of Throughput at 1% loss in asymmetric topology



THE CURIOUS CASE OF 1% PACKET LOSS

1%

(symmetric)

Mean 235.513105

STD 13.5692798

Min. 93.967

25% 229.667

50% 236.635

75% 243.596

Max. 281.886

1%

(asymmetric)

Mean 222.493196

STD 13.7883065

Min. 51.21

25% 214.788

50% 222.729

75% 230.675

Max. 280.877

1% of packet loss caused a 70.7% decrease in throughput in symmetric network 

topology, while in asymmetric topology it resulted in 74.2% decrease in throughput!



OVERALL RESULTS

1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

Mean 235.51 175.19 109.76 65.68 41.37 23.95 16.75 11 7.52 5.29

STD 13.57 37.48 46.68 36.09 25.48 17.31 12.16 8.4 5.97 4.33

Min. 93.97 11.93 0 0 0 0 0 0 0 0

0.25 229.67 158.09 74.56 37.77 21.38 9.94 6.96 4.97 2.98 1.99

0.5 236.64 190.91 111.86 61.67 37.77 19.89 13.92 8.95 5.97 3.98

0.75 243.6 199.86 150.14 89.53 57.18 33.81 23.37 15.41 9.95 6.96

Max. 281.89 223.72 201.33 175.49 149.62 119.3 87.5 68.59 46.76 37.78

1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

Mean 222.49 168.03 106.43 63.57 36.59 24.99 15.52 10.82 36.59 15.52

STD 13.79 34.91 44.62 34.81 24.44 16.93 11.58 8.26 24.44 11.58

Min. 51.21 5.97 0 0 0 0 0 0 0 0

25% 214.79 151.14 72.57 35.8 16.9 11.93 5.97 4.97 16.9 5.97

50% 222.73 182.45 108.35 59.66 31.84 21.87 11.94 8.95 31.84 11.94

75% 230.68 191.89 144.67 87 51.7 34.79 21.87 14.92 51.7 21.87

Max. 280.88 212.79 188.91 163.07 148.64 118.81 82.03 63.64 148.64 82.03

Symmetric network

Asymmetric network



OVERALL RESULTS VISUALISED

Throughput achieved 

in symmetric network

Throughput achieved 

in asymmetric network



BBR: THE FUTURE OF CONGESTION AVOIDANCE?

 BBR stands for Bottleneck Bandwidth and Round-Trip Time

 It is a congestion control algorithm developed by Google

 Designed to optimize network utilization and throughput by 

continuously probing for the available bandwidth and adjusting 

sending rate accordingly



BBR: HOW IT WORKS?

 Bandwidth estimation

 BBR estimates the available bandwidth by measuring the delivery rate of 
packets

 Uses concept of pacing to ensure a steady flow of packets without causing 
undue congestion

 Round-Trip Time (RTT) Estimation

 Maintains an estimate of the minimum RTT of the connection

 RTT variations are used to adjust the pacing rate, ensuring smooth 
transmission and reduced latency

 Bottleneck Detection

 Identifies the bottleneck link in the network path through various 
techniques like probing for increased delivery rates and utilizing RTT 
feedback

 Congestion Window Management

 Adjusts the sending rate by maintaining two parameters: pacing gain and 
probing gain

 Low Latency Operation

 Aims to keep the queue size low, which helps in reducing latency



KEY DIFFERENCES BETWEEN CUBIC AND BBR

 Congestion Window Adjustment

 CUBIC: Adjusts congestion window based on cubic function, reacting strongly 
to loss

 BBR: Dynamically adjusts sending rate based on bandwidth and RTT 
estimations, avoiding unnecessary loss

 Bandwidth Estimation

 CUBIC: Relies on packet loss as an indicator of congestion

 BBR: Actively probes for available bandwidth and adjusts sending rate, 
minimizing latency

 Latency Optimization

 CUBIC: Prioritizes throughput over latency, potentially leading to increased 
latency under heavy congestion

 BBR: Maintains low latency by continuously monitoring network conditions 
and adjusting congestion control parameters accordingly

 Implementation

 CUBIC: Widely adopted in many operating systems and network devices

 BBR: Developed by Google for its data centers, gaining adoption in various 
platforms and protocols.



ENABLING BBR

echo "net.core.default_qdisc=fq" >> /etc/sysctl.conf

echo "net.ipv4.tcp_congestion_control=bbr" >> /etc/sysctl.conf

sysctl -p

cat /proc/sys/net/ipv4/tcp_congestion_control

cubic

cat /proc/sys/net/ipv4/tcp_congestion_control

bbr

Verify currently configured algorithm

Enable BBR

Verify that BBR is configured



ESTABLISHING A BASELINE WITH BBR (NO PACKET LOSS)

Baseline

(symmetric)

Mean 868.50

STD 49.36

Min. 679.99

25% 860.15

50% 889.99

75% 890

Max. 900.31

Baseline

(asymmetric)

Mean 827.20

STD 46.06

Min. 639.99 

25% 839.92

50% 840

75% 849.99

Max. 860.26

 868.5 Mbps and 827.20 Mbps of Throughput for symmetric and asymmetric network, respectfully

 Asymmetric network traffic saw 4.7% decrease in Throughput over symmetric network 



MEASURING IMPACT OF 1% PACKET LOSS WHILE USING BBR

On average, 1% of packet loss caused 8.5% decrease in throughput while using 

BBR, stark difference to 70.7% decrease using CUBIC!



MEASURING IMPACT OF 1% PACKET LOSS WHILE USING BBR

1%

(symmetric)

Mean 794.06

STD 44.08

Min. 489.99

25% 800.33

50% 809.99

75% 810.01

Max. 830.08

1%

(asymmetric)

Mean 763.42

STD 44.28

Min. 519.96

25% 760

50% 779.99

75% 789.98

Max. 810.41

 1% packet loss, in symmetric network topology using BBR, caused 8.5% throughput decrease compared to 70.7% 

throughput decrease in the same topology while using CUBIC

 In asymmetric network topology using BBR, we saw 7.7% throughput decrease compared to 74.2% decrease in 

throughput while using CUBIC



COMPARISON BETWEEN CUBIC AND BBR AT 1% LOSS



OVERALL RESULTS WITH BBR

Symmetric network

Asymmetric network

1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

Mean 794.06 791.65 768.94 775.34 773.7 787.71 784.07 644.04 761.61 751.89

STD 44.08 44.58 47.55 50.11 56.29 61.42 64.99 268.31 76.86 77.96

Min 490 370 140 280.05 209.86 0 130 0 0 0

25% 800.34 799.99 779.99 780.27 788.9 800 799.99 750.01 780 770

50% 810 809.93 780.02 790 790 800.92 800 769.99 780.03 770.8

75% 810.01 810 790 790.2 790.25 810 810 770.02 790 780

Max 830.09 830.76 810.53 831.33 820.09 831.26 830.07 800.09 810.07 800.2

1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

Mean 763.42 822.11 795.6 812.53 792.47 793.79 750.63 749.33 760.8 751.64

STD 44.28 46.83 48.91 53.64 57.29 62.64 63.99 68.44 73.83 81.68

Min 519.96 500 270 249.83 160 39.98 0 0 0 0

25% 760.01 830 800.02 820.01 800.33 809.6 760.01 760 779.98 770

50% 780 839.99 810 830 810 810 770 770 780.01 779.77

75% 789.99 840.01 819.98 830.07 811.09 819.98 770.05 770.03 790 780.01

Max 810.42 860.04 840.08 850.17 840 840 820 810.09 810.14 800.07



BBR PRODUCTION TESTING

 Single POP (Tokyo) testing at Dropbox

 Performance comparison between BBRv1 and BBRv2

 Performance comparison with CUBIC and Reno

 Results indicate production readiness 

 Subset of Spotify users

 Results indicate production readiness

 Google

 They built it for their use case, kind of expected

 Reports of Netflix working with BBR on FreeBSD

 Cisco Catalyst SD-WAN enables it between SD-WAN endpoints when “tcp-optimization” feature is selected



CONCLUSION

 Even the smallest amount of packet loss has extremely negative consequences on throughput

 Outlines importance of monitoring and addressing even minor levels of packet loss

 CUBIC is, still, default congestion avoidance algorithm

 Packet loss outcomes significantly differ based on congestion avoidance algorithm used

 BBR shows significantly better results at any packet loss %


