Hardware offloaded IP forwarding in the NIC

Asbjgrn Sloth Tgnnesen
Fiberby ApS

May 20th, 2024

Intro
@0000

Who are Fibercity / Fiberby

We operate AS42541

Based in Copenhagen, Denmark

Using FTTB (Fiber to the Builing) technology
1/1 Gbps connection for 17€/month

35k residential households connected

Peak utilization: 140 Gbps / 15 Mpps (in+out)

Intro
(o] Jelele]

Simple ISP network model

End-users
DFZ router
-PNI's

IXP's

|

L2 switch

L3 switch L3 switch

internal routing cloud

’ Forward-deployed streaming servers

Intro

[e]e] lele}

AS42541 routing timeline

e Cisco 6500 (10G) @ Brocade MLXe-4 (40G)

Credit: Extreme Networks

Credit: Cisco Systems

Intro

[e]e]e] lo}

AS42541 routing timeline (cont.)

@ 2U server running Linux + BIRD v2 @ NIC upgraded to 100G

(Mellanox/Nvidia ConnectX-6 Dx)

Credit: Nvidia Corporation

Intro
0000e

One armed router / Router on a stick

Untag: 10 Untag: 20 @ Router with only one active physical
port

@ Typically uses IEEE 802.1Q VLAN
tags to reach multiple L2 networks.

@ L3 router ports are expensive

@ L2 switches are cheaper

Upstream A Upstream B

Web server

Tag: 10,20,50 Untag: 50

TC flower
0000000

OVS Offload Using ASAP? Direct

ovs-vswitchd <> ovsdb-server o O pen VSWitC h (OVS)
— orerion e Embedded switch (eSwitch)
-« > controller o SRIOV
R | W e flow offload
netdev provider o W o TC flower API

offload

z
z
<

dpif netlink zs

3

User @
Kernel |- Y

Kernel packets-
AWl P — i
VE Vil 1ol
e 2[e ‘ Mellanox added SW
eswitch (datapath)
e ===

Credit: Nvidia Corporation

TC flower
00000000

TC & flower primer

@ Linux kernel subsystem for Traffic Control (TC)
@ Chains, priorities and handles
@ Actions: drop, trap, goto, redirect
@ Hardware offload:
o Opportunistic / skip_sw / skip_hw
e Vendor agnostic-ish
e Some drivers only support chain 0

TC flower
[e]e] lelelele]e]

TC chains, prios and handles

Packet H

Rule 6

Chain 0

Rule 2

| Rule3 —

Rule 8
Chain 1 Chain 2 Chain 3

Rule action can goto another chain

Packet fate:
drop
trap

redirect

TC flower
[e]e]e] lelele]e]

Routing with TC flower

The anatomy of routing a packet

@ Change VLAN tag

Change source and destination MAC address
Decrement TTL / hoplimit

Update checksum (only if IPv4)

Push it back out again

TC flower
[e]e]e]e] Telele]

TC flower by example

1 tc filter add dev "$dev" ingress chain 4 pref 1 \
protocol 802.1Q flower skip_sw \

N

3 vlian_ethtype ipvé4 \

4 action vlan modify id "$vlan_id" \
5 pipe action pedit ex \

6 munge eth dst set "$new_dst_mac" \
7 munge eth src set "$new_src_mac" \
8 munge ip ttl dec \

9 pipe csum ip4h \

10 pipe action mirred egress redirect dev "$dev"

TC flower
[e]e]e]e]e] lele]

TC flower by example

tc filter show dev enp2s0fOnp0 ingress chain 4

1 filter protocol 802.1Q pref 1 flower
2 filter protocol 802.1Q pref 1 flower handle Oxl1

3 vlan_ethtype 1ip

4 eth_type ipvéd

5 skip_sw

6 in_hw in_hw_count 1

7 action order 1: vlan modify id 620 protocol 802.1Q pipe

8 action order 2: pedit action pipe keys 5

9 action order 3: mirred (Egress Redirect to device enp2s0f0np0) \

10 stolen
11 index 1 ref 1 bind 1
12 used_hw_stats delayed

TC flower
00000080

TC flower by example (cont.)

tc filter show dev enp2s0fOnp0 ingress chain 4

1 action order 1: vlan modify id 620 protocol 802.1Q pipe
2 index 1 ref 1 bind 1

3 used_hw_stats delayed

4

5 action order 2: ©pedit action pipe keys 5

6 index 1 ref 1 bind 1

7 key #0 at eth+0: wval =xxxxxxxx mask 00000000

8 key #1 at eth+4: val xxxx0000 mask O00O0ffff

9 key #2 at eth+4: val 0000xxxx mask ffff0000

10 key #3 at eth+8: val xxxxxxxx mask 00000000

11 key #4 at ipv4+8: add ff000000 mask OOffffff

12 used_hw_stats delayed

13

14 action order 3: mirred (Egress Redirect to device enp2s0fOnp0O) \

15 stolen

TC flower
0000000

TC flower by example (cont.)

tc -s filter show dev enp2s0fOnp0O ingress chain 4

action order 3: mirred (Egress Redirect to device enp2s0fOnpO) \

1

2 stolen

3 index 1 ref 1 bind 1 installed 1241229 sec used 0 sec
4 Action statistics:

5 Sent 2828989939137069 bytes 3904698201 pkt \

6 (dropped O, overlimits O requeues O0)

7 Sent software O bytes 0 pkt

8 Sent hardware 2828989939137069 bytes 3904698201 pkt

9 backlog Ob Op requeues O

10 used_hw_stats delayed

Static hardware offload
[Je]

Static hardware offload

Inbound traffic is simple
@ Always known to be online next hop
@ Prefixes don't change
@ Next-hop is a L3 switch.

Static hardware offload
oe

Chaining it together

@ Send IPv4 to chain 1
@ Send IPv6 to chain 2

A

@ Rule 1: If TTL is expiring trap packet
@ Rule 10-: Match some linknets, and trap em
@ Rule 100-: Match inbound destinations, and goto chain 4/6

.

@ Forward packet

flower-route
[ele}

flower-route

Small daemon to syncronize routes to hardware

Runs an event loop, with two Netlink sockets

Extracts links, neighbours, routes and TC ruleset from the kernel
Learns routes from an aux. kernel routing table.

Maintains TC ruleset in kernel

Defensively coded, tries to only make minimal changes to TC
Currently unit tests have 70+% code coverage

Licensed as GPLv2+

flower-route

oeo

Block diagram

Neighbours flower-routed % TC ruleset

’ Aux. routing table ‘

| BIRD }— BGP

flower-route
ooe

BIRD config

BGP sessions

’ main BIRD table }—{ main kernel table‘

| offload BIRD table ——— offload kernel table |

Offload performance tests

IN
<

w
<

<

PPS forwarded in software
N
<

The effect of skip_sw rules on software processing

0 20 40 60 80 100

<n> non-matching rules, forcing the software path to take over
Linux v6.9

Offload performance tests

IN
<

w
<

<

PPS forwarded in software
N
<

The effect of skip_sw rules on software processing

0 20 40 60 80 100

<n> non-matching rules, forcing the software path to take over
Linux v6.9 Linux v6.10

Offload performance tests

40M

w
=}
<

20M

PPS forwarded in hardware
S
<

The scalability of skip_sw rules

0 20 40 60 80 100

<n> non-matching rules (based on priority), followed by one matching rule
pktgen forwarded

Offload performance tests

40M

w
=}
<

20M

PPS forwarded in hardware
S
<

The scalability of skip_sw rules

L) L) L) ! L) L)
1 1 1 I 1 1
0 20 40 60 80 100

<n> non-matching rules (based on handles), followed by one matching rule
pktgen forwarded

Wrapup
@00

Future work on fiower-route

Better TC ruleset debug and simulation tooling
More flexible configuration:
o Reverse path filtering (BCP38)
o Offload to directly connected hosts
Use TC handles (for better scalability)
ECMP support
Handle MTU differences
Verify that bonding works (eg. 2x100G)

Wrapup
oeo

Alternative applications - Energy efficient routing

25G router @ ~15W

@ Dell Wyse 3030LT (~3W, peak: 5W)

o M.2 (E-key) PCle v2 x1

@ -> mini-PCle

@ -> PCle riser

@ -> Mellanox ConnectX-5 2x25G
(~7W w/ DAC)

@ and a fan

Wrapup
[ofe]]

flower-route

@ Patches welcome https://github.com /fiberby-dk /flower-route

@ Next updates:
o Blog post with deployment details from Labitat (AS205235, Copenhagen hackerspace)
o Talk at BornHack (July 17-24th, 2024)

https://github.com/fiberby-dk/flower-route

	Intro
	TC flower
	Static hardware offload
	flower-route
	Tests
	Wrapup

