ECN bleaching detection
with Pietrasanta traceroute

RIPE 88

Luca Sani
Senior R&D Software Engineer @Catchpoint

o
¢ Previously @ RIPE87 MAT... Pietrasanta Traceroute

 Based on Dmitry Butskoy Linux traceroute

 Several enhancements
» Speedup
* QUIC traceroute
* ECN bleaching detection

 Work in Azure environment

TCP7In Session Pietrasanta — “A noble town since 1841 and a city
e ...and many more of art” (and where our Italian office is located!)

https://github.com/catchpoint/Networking.traceroute/

i+ catchpoint

https://traceroute.sourceforge.net/
https://github.com/catchpoint/Networking.traceroute/

ECN bleaching detection

#%% catchpoint

©2024 Catchpoint Systems

ECN mechanism

» The Addition of Explicit Congestion Notification to IP, rfc3168, 2001

e Two bits in the IP header

» The source declares that a packet should be treated with ECN by setting the IP-ECN fields either
to 01 or 10

» When congestion happens, instead of dropping the packet the router sets the IP-ECN fields to 11

(CE - Congestion Experienced)

EREo et

; IP-ECN: 01

IP-ECN: 00

= catchpoint

IP-ECN: 01

IP-ECN: O!f

&

IP-ECN: 11

IP-ECN: 11

0

https://www.rfc-editor.org/rfc/rfc3168.txt

¢ ECN feedback

A destination that receives a packet with IP-ECN = CE should report to the source this event
» The source should then adjust the rate
* The reportis done at transport/application layer

« Example: in TCP, this event can be reported using a dedicated TCP flag (ECE — ECN-Echo)

e 1 2 3 4 5 6 7 8 9 18 11 12 13 14 15

e T e e e T B T T T EuS R R
I I ICEUIAIPIRISIFI
| Header Length | Reserved | W cC Rl C|IS|S|Y | TI]|
I I IREGIKIHITININI
e T e e e T B T T T EuS R R

i+ catchpoint

ECN and L4S

* Recently, ECN mechanism got renewed attention due to L4S
(Low Latency, Low Loss, and Scalable Throughput — rfc9330, 2023)

* L4S requires an ECN feedback more accurate wrt the “classic” 2001 version

L4S

Nokia Be" Labs pioneerS L4S, the CTUCia| ' sender to react faster to queue build-up vs black-box
E2E queue build-up estimation
enabler for large-scale deployments of real-
Use of L4S requires a compliant TX/RX and network

(marking, CE feedback, on-path AQM, and new CC)

time applications
Packets

Marked

@€ WWDC23 ECT()

has initial L4S CC support B |

Packets
Remarked CE

in evaluation

Reduce network delays with L4S

https://www.rfc-editor.org/rfc/rfc9330.txt

More accurate ECN feedback

» TCP: More Accurate Explicit Congestion Notification (AccECN) Feedback in TCP (still a draft)

R e e e o R

T TSR UR
| | AJClEJU|lA][P|R]|S]|F]
| Header Length | Reserved EJW/|C|R]|]C|S|Ss]|Y]|TI]
| | RIEIG|K[H]|T|NI[N]

e RS

* QUIC: Supported natively via ECN counters in the ACK frame (rfc9000)

ECN Counts {
ECT@ Count (1),
ECT1 Count (1),
ECN-CE Count (1),

¥

i+ catchpoint

https://www.ietf.org/archive/id/draft-ietf-tcpm-accurate-ecn-28.txt
https://datatracker.ietf.org/doc/html/rfc9000#name-ecn-counts
https://datatracker.ietf.org/doc/html/rfc9000#name-ecn-counts

ECN bleaching detection

* Intermediate hops can bleach/alter the value of ECN into the IP header (see for example: The
Benefits of Using Explicit Congestion Notification (ECN)— rfc8087, 2017)

» With Pietrasanta traceroute we can send probes with IP-ECN values different from zero and check
hop by hop what was the IP-ECN value of the probe when it expired

 Detect bleaching, but also congestion and any kind of alteration

* We can also check whether the destination transport layer (either TCP or QUIC) supports more
accurate ECN feedbacks, because:

» TCP stack need to be patched

* Not all QUIC implementations report ECN counters

i+ catchpoint

https://www.rfc-editor.org/rfc/rfc8087.txt

Report ECN hop by hop

Probe sent

Frame 3: 76 bytes on wire (688 bits), 76 bytes captured (688 bits)
Linux cooked capture vl
~ Internet Protocol Version 4, Src: 172.21.82.242, Dst: 66.209.72.25
@1e@ = Version: 4
. 8181 = Header Length: 28 bytes (5)
Differentiated Services Field: @x@l (DSCP: CSB,QECN: ECT(1))
Total Length: 6@
Identification: @x26d2 (9938)
@88, = Flags: @x@
...0 0PBO GBBR BBOR = Fragment Offset: @
Time to Live: 2
Protocol: TCP (6)
Header Checksum: 8x@7f8 [validation disabled]
[Header checksum status: Unverified]
Source Address: 172.21.82.242
Destination Address: 66.289.72.25
~ Transmission Control Protocol, Src Port: 48689, Dst Port: 8@, Seq: 871745131, Len: @
Source Port: 48689
Destination Port: 8@
[Stream index: 1]
[Conversation completeness: Incomplete, SYN_SENT (1)]
[TCP Segment Len: @]
Sequence Number: 871745131
[Next Sequence Number: 871745132]
Acknowledgment Number: @
Acknowledgment number (raw): @
181@ = Header Length: 48 bytes (1@)
Flags: @x8c2 (SYN, ECE, CWR)
Window: 534@
[Calculated window size: 5848]
Checksum: @xda7l [correct]
[Checksum Status: Good]
[Calculated Checksum: 8xda71]
Urgent Pointer: @
Options: (28 bytes), Maximum segment size, SACK permitted, Timestamps, No-Operation (NOP), Window scale
[Timestamps]

catchpoint

ICMP TTL Exceeded

Frame 4: 72 bytes on wire (576 bits), 72 bytes captured (576 bits)
Linux cooked capture vl
Internet Protocol Version 4, Src: 64.79.149.27, Dst: 172.21.82.242
v Internet Control Message Protocol
Type: 11 (Time-to-live exceeded)
Code: @ (Time to live exceeded in transit)
Checksum: @x3c6d [correct]
[Checksum Status: Good]
Unused: @aaeease
% Internet Protocol Version 4, Src: 172.21.82.242, Dst: 66.2089.72.25
Blea = Version: 4
8181 = Header Length: 28 bytes (5)
Differentiated Services Field: @x@l (DSCP: CS@,JECN: ECT(1))
Total Length: 6@
Identification: @x26d2 (9938)
B@@. = Flags: ex@
...0 bGBG ©DOO BBED = Fragment Offset: @
Time to Live: 1
Protocol: TCP (6)
Header Checksum: @x88f8 [validation disabled]
[Header checksum status: Unverified]
Source Address: 172.21.82.242
Destination Address: 66.289.72.25
% Transmission Control Protocel, 5rc Port: 48689, Dst Port: 86
Source Port: 48689
Destination Port: 3@
Seqguence Number: B71745131

ECN detection: Some examples

[bash]% sudo

erall
1

U oa WM

o

7

; 0 ECN
'.205.117 <T0S:1,DSCP:0,ECN: 1=

8.44.181 <T05:1,DSCP:0,ECN: 1>
4.181 =syn,ack

DestinationReach

AccECN over TCP

Bleaching happened

catchpoint

./trac ute -nT -q 1 --ecn=
4.181(95.228.44.181),

2ce,cwr> | 172.

No bleaching, destination supports

1 -0 acc-ecn,
30 hops max,

234 ms

.374 ms
.297

358

.320

6.609 ms

160.604 ms
173.535 ms

170.007 ms

391 ms

[bash 1% sudo

tracerout 0 81.
erall timeout nut _t

172.21.82.1 <T0S:1,DSCP:0,ECN:1=>
64.79.149.27 <T0S:1,DSCP:0,ECN: 1=
.79.139.17 <TOS SCP:0,ECN: 1=
.72.25 <TO0S :0,ECN: 1=

124 <T
.115.32.150 <TO
62.115.132.119 <T(
.115.135.190 <TC

62.115.137.38 <T
652.115.136.200 <T(
.91.254.90 <TO0S
.139.172 =T(
.140.217 <=T(
.35.117 <TO

Itracprnutp
.63.162

=

LE I R FU R N]

0~

=
(=]

1,DSCP:©,EC

o e
W R

:0,ECN
cE B ECNE
P:0,ECN

=
o un

,DSCP:0, ECN: 0>
,DSCP:0,ECN: 0>

6.63.162 <syn,ack=>
fa
DUthlnn 15: 20 ms

DestinationReach true

150.907 ms

-0 acc-ecn,info 81.236.63.162
60 byte packets, ov

1.852 ms
.875 ms

145.761 ms
155.524 ms
150.248

150.43

150.790
150.816
1531555
EE Tz

IP-ECN bleaching in the wild

» We run Pietrasanta traceroute from Catchpoint nodes deployed around the world to understand
how many traceroutes show the effects of ECN bleaching

* Besides research curiosity, this can be useful to understand how much the network is prepared to
accommodate L4S.

« ECN is an essential requirement for L4S
 This is not intended to be a rigorous research work

* The results presented are obviously biased by the node selection

» We tried to be as fair and distributed as possible in selecting sources and destinations

i+ catchpoint

'. Results

~332k traceroutes > ~42k (12%) bleached results

22506 RUNS

5%

7889 RUNS

2456 RUNS
2%

74 RUNS

364 RUNS
v

i+ catchpoint

catchpoint

.. Inside-out results

Estonia
Iceland
Sweden 40.41%
Denmark 39.30%
Croatia 37.93%
Belgium 33.93%
Slovakia e 31.97%
Romania eeesssssssssssssssssssssssssessssssssss - 30.36% .
Crech e By 36 ASes caused bleaching
Spain e 27.07%
Poland meesssssssssssssSSSSSSss——— 06.35% 100000
Russian Federation maesssssssssssssssSSSSSSS————)5 58%
France meesssssssssssssssmmSSmmmmmmmmmm——)/ 99%
Ireland S 04 74%
United Kingdom meessssssssssssssssssssmmm—m—" 27 93%
Netherlands mee————essssssssss——— 21.61%
Germany 21.59%
Hungary s (0.55%
Norway F—— 19 80%
Turkey ————— 19.52%
Austria TEEEEE————]7.54%
Italy 16.08%
Albania ———]3.84%
Finland me——— 13.66% 10 o0
Serbia meeeessss——— 11.26% 0000 ,,
Slovenia meee——— 11.18%
Switzerland ———— 10 50% 1 o000

Greece Fm== 10.30% 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35
Belarus ms—————— 3 09%

Bulgaria e— 7.63% AS jth
Portugal m—— G 43%
Luxembourg 0.00%

68.43%

57.60%

10000

1000

[]
100 Coee,

of bleached traceroutes
[]

) IF YOU COULD.STOP BLEAGHING ECN
Conclusions and future work —

,-//

y
—
imgfiip.com

* Pietrasanta traceroute may help in identifying where the bleaching is happening

* ECN Bleaching is not a tale and still around

* You cannot fix what you cannot see!

* It may be extremely interesting to see what RIPE Atlas could see!

i+ catchpoint

Thank you!

* Feel free to check/use/ & contribute!
https://github.com/catchpoint/Network
ing.traceroute/ (GPL!)

* And come by to meet us!

* Pietrasanta is a nice town on Tuscany
seaside ...

i+ catchpoint

https://github.com/catchpoint/Networking.traceroute/
https://github.com/catchpoint/Networking.traceroute/

	Slide 1: ECN bleaching detection with Pietrasanta traceroute
	Slide 2: Previously @ RIPE87 MAT… Pietrasanta Traceroute
	Slide 3: ECN bleaching detection
	Slide 4: ECN mechanism
	Slide 5: ECN feedback
	Slide 6: ECN and L4S
	Slide 7: More accurate ECN feedback
	Slide 8: ECN bleaching detection
	Slide 9: Report ECN hop by hop
	Slide 10: ECN detection: Some examples
	Slide 11: IP-ECN bleaching in the wild
	Slide 12: Results
	Slide 13: Inside-out results
	Slide 14: Conclusions and future work
	Slide 15: Thank you!

