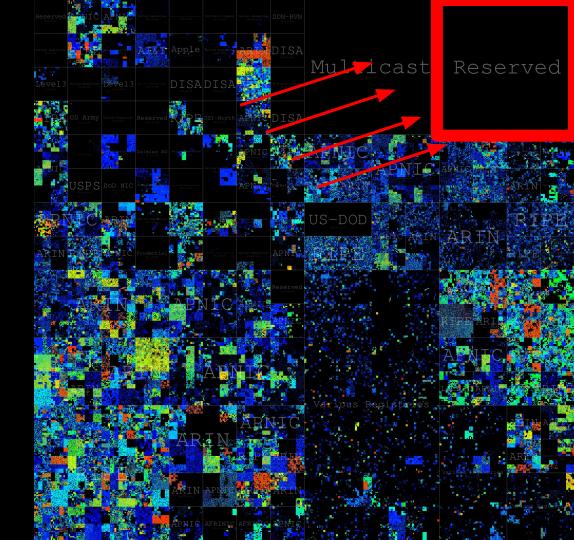
Multicast Reserved

"Reclaiming" 240.0.0.0/4


Ben Cartwright-Cox

Zbyněk Pospíchal

Class E Space

- Lives between 240.0.0.0 -> 255.255.255.254
- Right after Multicast space

- Currently sits in "Reserved" State
- Has existed this way for a long time, but no one really cared until...

IPv4 Exhaustion

- The IPv4 machine stopped providing IPv4 addresses at scale
- At what point did we "run out" of IPv4 addresses is a debate
 - A pretty boring debate as it kind of does not matter to the business case in question
- People go looking for "other" addresses (As there will always be some people who think that IPv6 is not ever going to reach universal adoption)

• Class E is not alone in being eyed up for reclamation, 0.0.0.0/8 could *technically* be reclaimed (other than 0.0.0.0), and 127.0.0.0/8 could *technically* be reclaimed (with some obvious restrictions)

Some hearsay about how we got here in the first place

- It was not obvious that the internet was going to be actually used
- Nor was it obvious (at the start) that we would run out of 32 bit address space
- Several blocks were left unusable for unicast
 - o 0.0.0/8
 - Could have easily been been changed to 0.0.0/24 or even 0.0.0/32, when classful routing got going
 - 127.0.0.0/8
 - Similar story to 0.0.0/8
 - o 240.0.0/4
 - Was left around incase of a mythical "3rd type of routing" was discovered (that wasn't unicast or multicast)
 - 224.0.0.0/4 (yes multicast)
 - There is draft-gilmore-taht-v4uniext-01 that suggests 225/8 through 231/8 to become unicast

Let me make my views known (I'm not crazy I promise)

• You should be deploying IPv6

- Class E (and others) will likely never get into the global routing table
 - Changing carrier policy is hard
 - Changing end user devices is hard
 - Who wants addresses that might not work for some users???
 - You could joke that already exists, *it's called IPv6*
- However Class E is a interesting idea for local addressing

Class E as a local unicast space

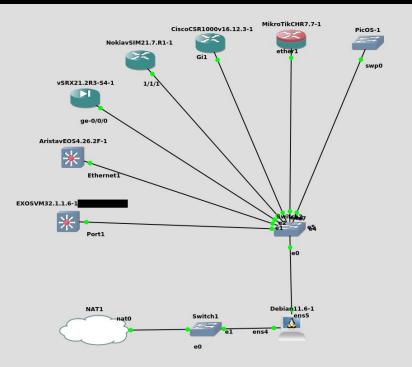
- It happens that 10.0.0.0/8 (and other RFC1918 space) is not actually as big as some people hoped it would be
- 240.0.0/4 is however, very big
- There is already some precedent in using 240.0.0.0/4 space for this:
 - AWS uses 240.0.0.0/4 space internally for some network devices [1]
 - They also exist in some other networks too, seen in traceroutes [2]
 - Also some Home/SMB networks are using 240/4 space (somehow?) [3]
 - Fan container networking by Canonical uses it [4]

- [2] <u>https://labs.ripe.net/author/qasim-lone/2404-as-seen-by-ripe-atlas/</u>
- [3] https://blog.benjojo.co.uk/post/ip-address-squatting

^{[1] &}lt;u>https://www.youtube.com/watch?v=0tcR-iQce7s&t=1709s</u>

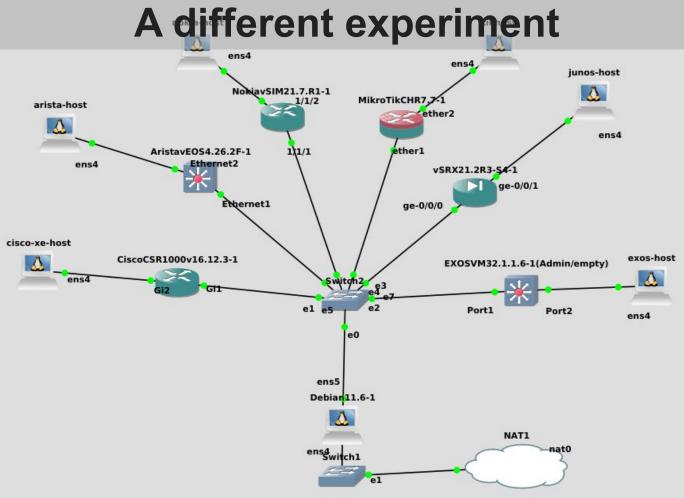
^[4] https://canonical.com/blog/introducing-the-fan-simpler-container-networking

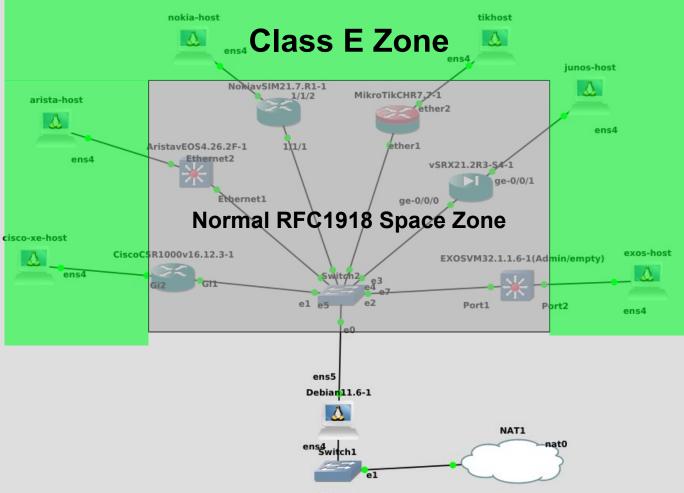
Class E as a weird bodge


- Cloudflare has a weird option to hash IPv6 addresses into Class E IPv4 addresses
 - My own experience is that nearly no one uses this, because it's easy for a client to abuse
 - <u>https://developers.cloudflare.com/network/pseudo-ipv4/</u>
 - TI;dr MD5 the IPv6 address and mask that into a Class E space address

Unfortunately, Vendors!

- Stuff that works
 - Almost all Linux distros post 2008
 - Android post 2009
 - MacOS / OSX post 2008/9 (iOS implicated in support as well)
 - OpenBSD post October 2022
 - Arista EOS Post 2021 (use ipv4 routable 240.0.0.0/4)
 - JunOS post 2009! (use edit routing-options martians 240/4 orlonger allow)
- Stuff that does not work
 - Windows
 - NetBSD / FreeBSD


Testing dynamic routing on vendors


- Build a router petting testing zoo
- Test if they can all peer with each other on OSPF/BGP using class E link locals, send, and install Class E routes

Vendor results (BGP peering on Class E space)

- EXOS 32.1.1.6-1
 - \circ Won't set Class E Link locals
- Arista (v)EOS 4.29.0.2F
 - Works fine with adjustments
- JunOS 22.X
 - Works fine with adjustments
- RouterOS 7.7
 - > Works fine
- IOS XR
 - Works fine
- IOS XE
 - \circ $\,$ Won't set Class E Link locals $\,$
- Nokia SR-OS
 - \circ Won't set Class E Link locals
- Huawei VRP
 - \circ Won't set Class E Link locals

JunOS quirks

root@vsrx# commit

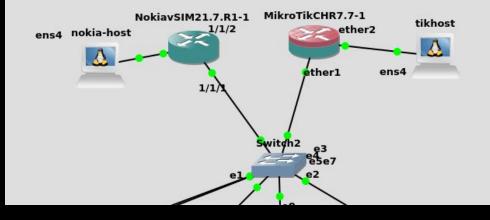
[edit system services dhcp pool]

'240.0.2.0/24'

Subnet specified cannot be used in a pool

error: configuration check-out failed

Everything works, except the DHCP server


Arista (vEOS) Quirks

- localhost#configure
- localhost(config)#router general
- localhost(config-router-general)#ipv4 routable 240.0.0/4
- % Unavailable command (not supported on this hardware platform)

"I will just have to assume this works"

OSPF Quirks

- Class E Prefixes from other neighbors will be carried over OSPF, to other members.
- However SROS/IOS-XE will not install them into the RIB or FIB

• This is lethal since it means that the router will claim it can route these packets, but will drop them instead.
[admin@MikroTik] > tool/traceroute 240
Columns: LOSS, SENT, LAST

nokia-host # birdc s	ro grep 240
192.0.3.0/24	unicast [direct1 15:43:15.222] *
240.0.1.0/24	unicast [ospf1 15:42:58.257] * I
240.0.2.0/24	unicast [ospf1 15:42:58.257] * I
240.255.1.1/32	unicast [direct1 15:43:32.751] *
6.6.6/32	unicast [direct1 15:43:32.751] *
192.168.122.0/24	unicast [ospf1 15:42:58.257] * I

[ac	lmin@Mi	.kroTi	k] >	tool/t	racerout	te 24	0.255.	1.1	
Col	.umns:	LOSS,	SENT	, LAST					
#	LOSS	SENT	LAST						
1	100%	146	time	out					
2	100%	146	time	out					
	100%	146	time	out					
4	100%	146	time	out					
5	100%	146	time	out					
[ac	lmin@Mi		k] >	tool/t		te 6.	6.6.6		
Columns: ADDRESS, LOSS, SENT, LAST, AVG, BEST,									
#	ADDRES	S	LOSS	SENT	LAST	AVG	BEST	WOI	
1	192.0.	2.6	0%	5	1.7ms	1.7	1.6	1.9	
2	6.6.6.	6	0%	5	1.9ms	2	1.5	2.5	

Vendor results (routing 'E' prefixes via OSPF/BGP)

- Arista (v)EOS 4.29.0.2F
 - $\circ~$ I can't test routing, but OSPF etc works
- JunOS 22.X
 - Works! (With previous tweaks)
- RouterOS 7.7
 - \circ Works!
- IOS XR
 - Works!
- IOS XE
 - 🚨 Will relay class E OSPF routes, won't install into FIB 🚨
- Nokia SR-OS

🚨 Will relay class E OSPF routes, won't install into FIB 🚨

• Huawei VRP

🚨 Will relay class E OSPF routes, won't install into FIB 🚨

And then, out of nowhere

Surprise test from AS8747 (Quantcom, a.s.)

class E routing experiment - Mozilla Thunderbird								
<u>File E</u> dit <u>V</u> iew <u>G</u> o <u>M</u> essage <u>T</u> ools <u>H</u> elp								
🗇 Get Messages \vee 🖉 Write 🛛 🧭 Tag 🗸								
From Zbyněk Pospíchal <zbynek.pospichal@quantcom.cz></zbynek.pospichal@quantcom.cz>	🚳 Reply 🖾 Reply List 🗸 🕏 Forward 🔯 Archive	Junk 🗇 Delete More 🗸						
To tech@lists.nix.cz <tech@lists.nix.cz> @, six-providers@six.sk <six-providers@six.sk> @, vixoper@vix.at @</six-providers@six.sk></tech@lists.nix.cz>								
Subject class E routing experiment								

Jan 19, 2024

Dear peering partners,

We started to announce a prefix 242.242.0.0/16 from our experimental ASN 8747. 242.242.1.1 should be pingable if such a route passes your filters and router setup.

Current test results are that IOS XR supports class E routes with no issues by default. With JunOS, using a command "set routing-options martians" etc. is necessary. Your feedback regarding other platforms is appreciated.

S pozdravem/Best Regards,

Zbyněk Pospíchal Quantcom, a.s.

RIPE Atlas findings

50% of probes inside their own network can reach it!

Settings & Status		Latest Results		Ma	p Tracemon	IPMap		Downloa	ds	
Probe +	ASN (IPv4) \$	ASN (IPv6) \$	¢	\$	Time (UTC) 🗧	RTT \$		¢ Hops ¢	Success +	¢
13200	29208			0	2024-01-19 18:11	0.718		8	×	0
19753	29208			0	2024-01-19 18:11	0.479		7	×	0
20515	29208		-	۵	2024-01-19 18:11	×		6	×	0
22072	29208			0	2024-01-19 18:11	×		6	×	0
30955	29208		-	0	2024-01-19 18:11	1.345		7	~	0
60830	29208		-	0	2024-01-19 18:11	1.837		8	~	0
62603	29208		-	0	2024-01-19 18:11	×		6	×	0
1003739	29208	29208	-	۵	2024-01-19 18:11	8.857		9	~	0
1004141	29208			0	2024-01-19 18:11	1.805		6	~	0
1004199	29208			0	2024-01-19 18:11	4.832		6	~	0

RIPE Atlas findings (2)

Again 50% of probes from their downstreams can get to it!

Probe +	ASN (IPv4) \$	ASN (IPv6) \$	\$	\$	Time (UTC)	\$	RTT \$	\$ Hops \$	Success +	\$
7211	25248	25248		0	2024-01-19 18:1	9	0.602	7	×	0
13490	48926	48926		0	2024-01-19 18:1	9	2.082	9	~	0
33287	205535		-	0	2024-01-19 18:1	9	9.854	4	×	0
53850	203488	203488		0	2024-01-19 18:1	9	3.315	8	~	0
1005950	48926	48926		0	2024-01-19 18:1	9	1.805	7	~	0
1006785	203488	203488		0	2024-01-19 18:1	9	0.494	7	×	0

"Who wants space that does not work?"

- Pre (total) IPv4 depletion one of my old employers got a /12
- This /12 was immediately announced, and it became clear upon testing that not the whole internet could reach it!
- Some people have/had bogon filters, and since this new /12 was unallocated! So it was filtered!
- This was a extreme pain in the ass to fix, We moved some customers to the /12 and worked with everyone to fix the issue
- It took ~10 weeks, but nearly every offender had fixed the problem at that point

Now imagine that but with IP space that needs config tweaks in most of your network

Pros and Cons of reclaiming 240/4

Pros

 IPv4 Link locals or internal prefixes can now be moved away from RFC1918 space

 If easy, could provide a temporary (LOL) fix to your internal IP space problems

Cons

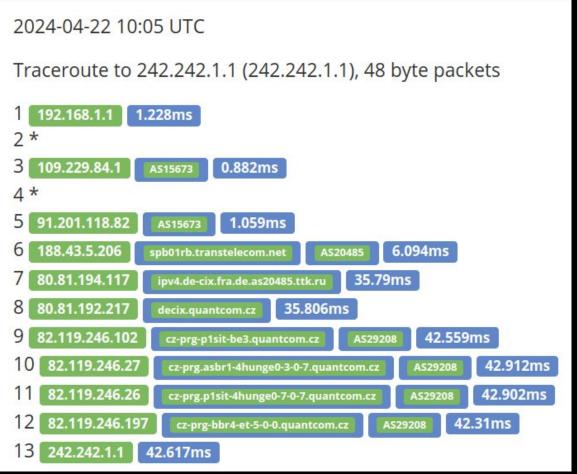
- Network vendor support is poor
- Endpoint support is poor (Windows)
- "Ownership" of 240.0.0.0/4 is up for debate
- A lot of the work to make 240/4 work could be spent on IPv6 instead
- Other people's weird uses of 240/4 may collide with you. Making addresses in 240/4 murky

In summary (In Ben's eyes)

- Getting 240/4
 - For local unicast networks?
 - Not too insane, we already see networks doing this and some vendors supporting it for those networks, Clearly it works for some
 - For inter-network unicast?
 - Insane.
- Getting 0.0.0.0/8 / 127.0.0.0/8
 - For local unicast?
 - Insane. Massive amounts of work for no real gain
 - For inter-network unicast?
 - Insane.

Practice > Theory

Zbyněk Pospíchal to show what Quantcom saw!

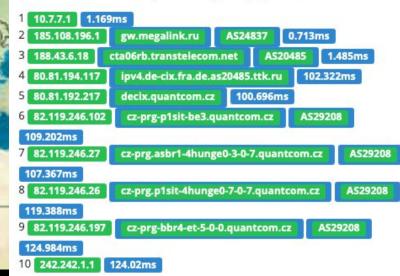

Scanning /0 from Class E space

- 3.6Bil (ish) ICMP ping sent by Zbyněk
- 184,496 reponses (0.005%), 380,286,307 would indicate fully reachable
- Networks that peer with Quantcom, since RS would not accept this
- Mostly thanks to IOS XR ability to forward 240/4 with no additional config

Large scale acceptance

Interesting networks that accept include:

- Akamai (Prolexic)
- Quad9
- AT&T EMEA / AS2686
- TTK / JSC TransTeleKom / AS20485
- Orange Romania / AS9050
- Cloudflare's Prague PoP / AS13335
- several networks in Vietnam, UAE etc.


Latest Traceroute Result for Measurement #70179055

Latest Traceroute Result for Measurement #70179345 2024-04-22 10:17 UTC Traceroute to 242.242.1.1 (242.242.1.1), 48 byte packets 192.168.3.1 0.577ms 2 193.34.174.1 2.292ms AS203574 3 92.80.1.201 2.023ms AS9050 4 92.83.132.113 AS9050 13.958ms 5* 6 10.0.200.6 42.026ms 7 10.0.240.9 54.23ms 8 80.81.192.217 decix.quantcom.cz 89.584ms 9 82.119.246.102 86.687ms AS29208 10 82.119.246.27 61.248ms cz-prg.asbr1-4hunge0-3-0-7.quantcom.cz AS29208 11 82.119.246.26 49.837ms cz-prg.p1sit-4hunge0-7-0-7.quantcom.cz AS29208 12 82.119.246.197 cz-prg-bbr4-et-5-0-0.quantcom.cz 49.128ms 13 242.242.1.1 54.395ms Latest Traceroute Result for Measurement #70178933 × 2024-04-22 09:56 UTC Traceroute to 242.242.1.1 (242.242.1.1), 48 byte packets 193.238.163.85.rps.cz 0.295ms 85.163.238.193 AS28725 2 10.2.4.241 0.322ms 3 10.2.4.253 0.865ms 4 85.163.238.157 2.489ms 5 85.163.238.153 153.238.163.85.rps.cz 3.123ms 6 85.163.9.93 AS28725 11.644ms 7 91.210.16.9 12.68ms nix.guantcom.cz 8 82.119.246.26 cz-prg.p1sit-4hunge0-7-0-7.quantcom.cz 11.934ms 9 82.119.246.197 cz-prg-bbr4-et-5-0-0.quantcom.cz 14.688ms AS29208 10 242.242.1.1 11.803ms

X

2024-05-21 09:48 UTC

Traceroute to 242.242.1.1 (242.242.1.1), 48 byte packets

Quad9 DNS responses

```
$ dig -b 242.242.1.1 @9.9.9.9 isc.org AAAA
; <<>> DiG 9.16.27-Debian <<>> -b 242.242.1.1 @9.9.9.9 isc.org AAAA
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 22090
;; flags: gr rd ra ad; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1
;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 512
;; QUESTION SECTION:
;isc.org. IN AAAA
;; ANSWER SECTION:
isc.org. 300 IN AAAA 2001:500:6b:2::28
;; Query time: 172 msec
;; SERVER: 9.9.9.9#53(9.9.9.9)
;; WHEN: Wed Apr 03 15:00:21 CEST 2024
:: MSG SIZE rcvd: 64
```

Conclusion

So should you use 240/4?

No, unless you are totally out of RFC1918 and have no other options

Shy? Email ripe88@benjojo.co.uk

Questions?

<- Raw Data