
Low latency RPKI validation
Mikhail Puzanov

RIPE NCC

RPKI validation in a nutshell

● RPKI Relying Party software (validators) download crypto-objects from a set of

repositories for each Trust Anchor

● RPs validate RPKI tree(s) and produce payloads (VRPs, VAPs, etc.)

● The payloads end up in routers directly using RTR protocol or indirectly via API

or RTR proxy

● Repeat the above in some form

What do we mean by latency
● Get payloads (VRPs, etc.) from repositories to the router ASAP

○ "Propagation to Relying Party represents the most time-consuming step observed in

ROA processing" [1]

○ We assume that it is an improvement to reduce this time

● Do not get delayed or blocked by unresponsive or misconfigured repositories
○ Multiple papers about RPKI validators getting delayed, completely blocked or crashed [2],

[3], etc.

● All the ideas in this talk are implemented in rpki-prover validator

○ https://github.com/lolepezy/rpki-prover

Handling repositories: basics

● Run every repository fetch in a separate process constrained in

○ Time (clock and CPU)

○ Memory

● Run multiple fetches in parallel

○ Run a fetch if there are less than N of them already running

○ Or it's been waiting for more than M seconds

○ Always make some progress

Handling bad repositories

● Some repositories time-out: validation is blocked on fetching

● Fetch can be synchronous or asynchronous to validation

● A repository is marked "synchronous" when

○ Seen for the first time

○ After a successful fetch within N seconds

○ No RRDP —> rsync fall-back happened

Handling bad repositories
● RRDP timeout 120s
● 5 fetchers max
● 7 TAs (5 RIRs, 2 TA0)

Handling bad repositories
● RRDP timeout 30s
● 5 fetchers max
● 7 TAs (5 RIRs, 2 TA0)

Handling bad repositories

● Set timeouts per synchronous repository based on how much it took to download

it previous time(s)

○ The faster a repository is the less we are going to wait for it next time

○ No big delays from a suddenly broken synchronous repository

Reducing delays by RP

● Revalidate more often

○ It is expensive: it takes clock and CPU time (10s of seconds to minutes)

○ More frequent RRDP requests

● Reduce CPU usage per validation

● Avoid unnecessary RRDP requests

Reduce CPU usage per tree validation

● Incremental tree validation

○ Validate fully only newly downloaded objects

○ Be smart about which manifest children to revalidate

○ For already validated objects only re-check validity time

● Complexity: O(Vfull×Nobjects) becomes O(Vfull×Nupdates + Vshort×Nobjects)

Reduce CPU usage per tree validation

● Pro: about 9-10 times less CPU usage for tree validation

● Cons:

○ Complexity, git diff is (+3337, -1910)

○ Does not currently support validation reconsidered (RFC 8360)

Less RRDP requests

● Adaptive refresh intervals per repository

○ If more than 1 delta, reduce fetch interval

○ If there are no updates, increase fetch interval

○ Don’t make it less than 1 minute or more than 10 minutes

● Pro: about 40% less RRDP fetches

● Cons: complexity, higher latency for infrequently updated repositories

● It is a tradeoff between latency and redundant requests

Less RRDP requests

● For a typical run

○ 3-5 repositories converge to 1 minute interval (depending on time of the day)

○ ~ 65 repositories converge to 10 minutes interval

○ ~ 7 settle somewhere in between

Conclusion

● Pretty simple rules significantly improve resiliency to delay and blocking, still

some low-hanging fruits there

● It is possible to implement a cheaper and a more future-proof tree validation

algorithm but it introduces complexity

● It seems to make sense to adjust update intervals for RRDP repositories

dynamically (also ETags are not supported universally, it’s a shame)

● rpki-prover releases 0.9.x includes all these features, try it

References

1. Romain Fontugne, Amreesh Phokeer, Cristel Pelsser, Kevin Vermeulen & Randy Bush. RPKI

Time-of-Flight: Tracking Delays in the Management, Control, and Data Planes

2. Tomas Hlavacek, Philipp Jeitner, Donika Mirdita, Haya Shulman and Michael Waidner,

Stalloris: RPKI Downgrade Attack

3. Koen van Hove, Jeroen van der Ham and Roland van Rijswijk-Deij, rpkiller: Threat Analysis

from an RPKI Relying Party Perspective

Questions?

