
RIPE 88, IoT WG
22/05/2024

Investigating Security Vulnerability in
IoT Thread Network
Dr Poonam Yadav

poonam.yadav@york.ac.uk

2

System &
Network

Interoperability

Wireless
Comm

Embedded
and

Resource
constrained

compute

Internet
Architecture
& Protocols

Security

Machine
Learning

SafetyNet Project
● Building Secure and Resilient IoT networks, specifically focused on Home IoT

ecosystem
● Investigating vulnerability in protocols (Zigbee, Thread, Bluetooth and other networks)
● Investigating IoT device fingerprinting, e.g., identifying IoT devices uniquely or similar

category of IoT devices in the network (without using device IP addresses)
- IoT device behavioral fingerprint using their network traffic and ML

a. The network traffic features used for training ML models can come
from different layers of TCP/IP stack.

- IoT device Physical Unclonable Function (PUF) based fingerprinting
● Detecting IoT device abnormal network behavioral change using the ML model

(fingerprints). The abnormal network behavioral change can happen due to DoS or
similar attacks or any other faults. Different fingerprints can be used for detecting
different attacks and faults.

3

SafetyNet Project – Contd.
Prevention of attacks and Privacy leakage
Secure by design

--- Reducing attack surface by deploying MUD (IETF 8520). We investigates
efficiency of MUD ecosystem (rule enforcement - IP table vs eBPF program),
MUD extension, MUD user interface for accountability and transparency

--- Building secure device/user authentication, authorization and access control
mechanisms, data/message encryption

--- Proactive traffic filtering and blocking through firewalls.
Privacy by design

--- User data encryption, anonymization, differential privacy, multi-factor
authorization, Secure multi-party computation, Federated Learning

Accountability and transparency
--- Providing Users’ control over their devices by providing more transparency and

tools.

4

Thread Network
● On July, 2014, the Thread group was launched with just

one aim in mind: to provide the best method for connecting
and controlling gadgets in the house and buildings.

● Thread is an IPv6-based mesh networking protocol
developed by industry-leading technology companies
for connecting products around the home and in
buildings to each other, to the internet and to the cloud.

● The Thread stack is an open standard that is built upon a
collection of existing Institute for Electrical and
Electronics Engineers (IEEE) and Internet Engineering
Task Force (IETF) standards, rather than a whole new
standard.

● Thread networks are simple to install, highly secure,
scalable to hundreds of devices and developed to run on
low-power IEEE 802.15.4 chipsets. https://www.silabs.com/documents/public/user-

guides/ug103-11-fundamentals-thread.pdf

Thread General Characteristics

6

• Simple network installation, start-up, and operation
• Secure – authorisation and encryption at

network/application layer
• Small and large home networks
• Large commercial networks
• Bi-directional service discovery and connectivity
• Range
• No single point of failure
• Low power
• Cost-effective

Ref: https://www.silabs.com/documents/public/user-guides/ug103-11-
fundamentals-thread.pdf

Open Thread
● OpenThread released by Google is an

open-source implementation of Thread®.
Google has released OpenThread to make
the networking technology used in Google
Nest products more broadly available to
developers, in order to accelerate the
development of products for the connected
home and commercial buildings

● OpenThread implements all Thread
networking layers (IPv6, 6LoWPAN, IEEE
802.15.4 with MAC security, Mesh Link
Establishment, Mesh Routing) and device
roles, as well as Border Router support.

7

Ref: https://openthread.io/

IEEE802.15.4 Standard
-- A low-rate wireless personal area network (LR-WPAN)

-- Allows wireless connectivity in applications with limited
power and relaxed throughput requirements.

-- Ease of installation, reliable data transfer, low cost
implementation.

-- A device has a single radio interface that implements an
IEEE Std 802.15.4 MAC and PHY.

-- Thread protocol stack implements IEEE802.15.4 for its
PHY and MAC layers.

LR-WPAN device architecture

IEEE802.15.4 PHY Features
PHY layer responsibilities include:

modulation and demodulation,
switching between transmitter and receiver,

fragmentation,
scrambling,

interleaving, and
error correction coding.

9

IEEE802.15.4 PHY Features

10

Frame Control Field (FCF) Structure

IEEE802.15.4 PHY Features
● When the Frame Control Field (FCF) is received, the driver

checks if the length of the frame is valid, and it verifies the
frame type and version.

● When the destination address fields (PAN ID and address)
are present and received, the driver checks if the frame is
destined to this node (broadcast or unicast).

● When the entire frame is received, the driver verifies if the
FCS field contains a valid value.

● A received frame includes a timestamp captured when the
last symbol of the frame is received. The timestamp can be
used to support synchronous communication like CSL or
TSCH.

If all checks are passed, the driver passes the received frame to
the MAC layer.

11

Idle Sequence

Receive Sequence

Transmit Sequence

Continuous CCA

TR Sequence

IEEE802.15.4 PHY Features
Sending Automatically ACK frames

This automatically created ACK frame complies
with IEEE 802.15.4-2006: 7.2.2.3 or IEEE
802.15.4-2015: 6.7.2 and 6.7.4.2. This frame is
sent exactly 192 microseconds after a data
frame is received.

The ACK frame is sent only if the received frame
passes all the filter steps, even in promiscuous
mode, and if the ACK request bit is present in
the FCF of the received frame.

12

https://openthread.io/

IEEE802.15.4 PHY Features
Sending Automatically ACK frames

The driver handles the pending bit as follows,
depending on the protocol used:

Thread mode:

• If the driver matches the source address
with an entry in the array, the pending bit
is set (1).

• If the array does not contain an address
matching the source address, the pending
bit is cleared (0).

13

https://openthread.io/

Thread Network Architecture

The Thread network is comprised of two types of Thread devices:

Full Thread Device (FTD)
- versatile, can act as network Leader, Router or End Device
- an FTD device can perform the role of Border Router, a gateway to other
networks (Wi-Fi, Ethernet, etc)

Minimal Thread Device (MTD)
- least requirements on device power and resources (usually battery
powered)
- normally configured to act as End Device only

The Thread's mesh networking topology makes the wireless system more
reliable by enabling message forwarding between radio nodes.

https://openthread.io/Designed to avoid single point of failure

IPv6 / 6LoWPAN

● 6LoWPAN provides a compression mechanism that reduces the IPv6
header sizes sent over the air and thus reduces transmission overhead.
The fewer bits that are sent over the air, the less energy is consumed by
the device. Thread makes full use of these mechanisms to efficiently
transmit packets over the 802.15.4 network.

The two RFC’s provide more details on how fragmentation and header
compression are accomplished in 6LoWPAN

● RFC 4944 (https://tools.ietf.org/html/rfc4944) and
● RFC 6282 (https://tools.ietf.org/html/rfc6282)

Thread Network Vulnerability
● Thread, like ZigBee and WirelessHart, uses a wireless radio system for networking by

implementing the well-established IEEE802.15.4 protocol.

● Unliked wired systems, the network is vulnerable to radio jamming and RF
interference. For example, a powerful radio signal (a simple unmodulated carrier
wave) can overcome and interfere with the network.

● The IEEE802.15.4 PHY implements an algorithm (CSMA-CA) to detect channel RF
energy, and hold-off pending data transmission until the channel is free, potentially
stalling a Thread network.

● The MAC sub-layer in the IEEE802.15.4 architecture can be jammed with rogue data
packet frames, reducing Thread network reliability and performance.

Thread Network Testbed

Thread-capable devices from Nordic Semiconductor and Silicon Laboratories
were chosen to form the test Thread network. These companies combined
currently occupy the majority market space for Thread chipsets.

nRF5340DK (nRF5340 SoC) SLWSTK6006B (EFR32MG12 SoC)

18
Poonam Yadav, Nirdesh Sagathia, Dan Wade:
Demo: Battery Depletion Attack Through Packet Injection on IoT Thread Mesh Network. IEEE COMSNETS 2024

https://dblp.org/pid/369/8618.html
https://dblp.org/pid/369/8640.html
https://dblp.org/db/conf/comsnets/comsnets2024.html

19

IoT Thread Network New Device Commissioning

Poonam Yadav, Nirdesh Sagathia, Dan Wade:
Demo: Battery Depletion Attack Through Packet Injection on IoT Thread Mesh Network. IEEE COMSNETS 2024

https://dblp.org/pid/369/8618.html
https://dblp.org/pid/369/8640.html
https://dblp.org/db/conf/comsnets/comsnets2024.html

20

IoT Thread Network New Device Commissioning
- ongoing work

Poonam Yadav, Nirdesh Sagathia, Dan Wade:
Demo: Battery Depletion Attack Through Packet Injection on IoT Thread Mesh Network. IEEE COMSNETS 2024

https://dblp.org/pid/369/8618.html
https://dblp.org/pid/369/8640.html
https://dblp.org/db/conf/comsnets/comsnets2024.html

Thread Network Testbed
Four nRF5340DK and two SLWSTK6006B boards comprise the Thread network. The
devices are pre-commissioned, sharing a common network key.

An nRF5340DK (on left) is configured as FTD and acts a Thread Leader/Router. All the
other boards are set as MTD End Devices.

F

The boards are attached
(using special magnetic
frames) to a dedicated
Thread Edge Testbed
designed and developed in
the Department of
Computer Science.

Thread Network Testbed

A Thead Topology Monitor (TTM) system developed
by Nordic Semiconductor is used to display the
Thread mesh network.

The TTM module itself is a Thread FTD device and
joined to the Thread network. It periodically sends
MLE messages on the network to maintain a live
topological view.

In the image opposite, an FTD is shown acting as
Leader/Router and Parent to all Child devices (End
Devices) and self-configured in a star topology.

Network DoS Attack Method

A Sewio Open Sniffer device is used to
detect the Thread network's operating radio
channel (channels 11 - 26)

Its Network Scanner reports a Thread's PAN
ID if a network is detected.

We only need to know the discovered
network's channel number for the DoS
Attack!

Replay Attack

24

In this instance, we witness the
successful replay of the previously
captured UDP packet into the
network. The original packet is
designated as packet number 3,
the first replayed packet is 8, and
the subsequent replayed packet,
after the removal of the last two
bytes, is identified as packet
number 11 in the figure. Both of
these packets are acknowledged,
although, at the upper layer, they
were not received.

Network DoS Attack Method
Having discovered the Thread network's channel number, the Open Sniffer is
then used to inject IEEE802.15.4 packets, controlled via Ethernet using the
Open Sniffer Python library.

● A single packet is repeatedly transmitted with an inter-frame spacing of 1
ms and with a transmit power of 1 mW (1m from the testbench).

● The packet contains a valid IEEE802.15.4 header plus a MAC frame and
payload.

● The MAC frame's source and destination address fields are cleared, as is
the payload.

● A minimum packet size (excluding header and DRC) of 32 symbols is
transmitted:

Packet: 69 98 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Network DoS Attack Method
A spectrum analyser measures the Open
Sniffer to a peak RF transmit power of +3
dBm centred on channel 15

26

The transmitted repeating packet is
shown to have a fixed Inter-Frame
Spacing (IFS) of 1.0 ms

DoS Attack Results

The OpenThread CLI is used to control and analyse the Thread network. All Thread
devices in the test are programmed with the CLI.

Three methods are used in the test to verify the network is unaffected/affected by the
DoS Attack:-

1. Visually, by using the TTM tool

2. Issuing OpenThread CLI 'ping' commands between all Child devices:
> ot ping <target Child IPv6 address>

Success indicated by 0% packet loss

3. Issuing OpenThread CLI 'discover' MLE discovery commands:
> ot discover <channel>

A returned network name indicates success

DoS Attack Result...

Injecting the repeating IEEE802.15.4 packet on
the network using the Open Sniffer device
causes the total collapse of the test Thread
Network!!!

The TTM tool shows the loss of all device on the
network; only the TTM FTD itself remains,
promoting itself to Thread Leader.

All OT ping commands return 100% packet loss.

All OT discovery commands fail to return any
discovered networks.

Total collapse of the Thread
Network.

DoS Attack Results
Wireshark, with an IEEE802.15.4
Sniffer device as input source,
shows the total dominance of the
repeating attack packet on radio
channel 15.

29

Further Work
● The precise mechanism causing the DoS Attack to succeed needs to be investigated and

verified. Possible causes are IEEE802.15.4 MAC sub-layer jamming or insufficient IFS period
(PHY/MAC turnaround time) in the Thread device.

● Investigate means to mitigate against the DoS Attack. Detection of the attack and response, i.e.
suspend network until free?

● Look at the implications of the DoS Attack on battery powered Sleepy End Devices (SEDs),
especially the problem of battery depletion (the SED wants to (re)join a network, consuming
power).

Development GitHub: https://github.com/SystronLab/thread-edge-testbed

Previous version - DEMO: https://github.com/SystronLab/ThreadBatteryAttack

Poonam Yadav; Nirdesh Sagathia; Dan Wade, Demo: Battery Depletion Attack Through Packet Injection
on IoT Thread Mesh Network, IEEE Comsnet’24.

https://github.com/SystronLab/thread-edge-testbed
https://github.com/SystronLab/ThreadBatteryAttack
https://ieeexplore.ieee.org/author/37391797200
https://ieeexplore.ieee.org/author/726935263342974
https://ieeexplore.ieee.org/author/733082279459621

Thanks For Listening
Any Questions?

31

Please reach out for the
collaboration

poonam.yadav@york.ac.uk

Follow us on:

https://github.com/systronlab

https://systronlab.github.io/

SafetyNet Project Team

Dr Poonam Yadav
poonam.yadav@york.ac.uk

Anthony Moulds
anthony.moulds@york.ac.uk

Peter Gillingham
peter.gillingham@york.ac.uk

Nirdesh Sagathia (MSc, 2022)
Dan Wade (BSc, 2023)
Vijay Kumar (Intern, 2021)

Previous Students

mailto:poonam.yadav@york.ac.uk
https://github.com/systronlab

